Tuesday, 17 January 2012

SORGHUM RATOONING

Ratooning is where a farmer gets more than one harvest from a single sowing. This is achieved by cutting the sorghum stalks to the ground level without removing the rooting system. When the roots from the previous season’s crop are in contact with some moisture, they produce tillers; which grow into full size plants.

A ratoon crop compared to a newly sown crop has an established root system which will utilize the available water in the root zone for crop growth early in the season, reduce plowing and planting labor and avoid migratory quelea birds in August by maturing early. To make best use of sorghum, this practice is preferred where environmental factors prohibit continuous cropping throughout the year.

Ratooning is important because starter water is reduced i.e. very little rainfall is required for the commencement of seed germination, crop growth and development hence the crop matures earlier. Yields per unit are reduced but not significantly when compared to yield from direct sowed seeds.

HARVESTING AND USES OF SORGHUM

HARVESTING OF SORGHUM

Sorghum is usually harvested by hand when it has reached physiological maturity - which means the grain is hard and does not produce milk when crushed. Cut the heads with sickles or a sharp knife from plants in the field or cut the whole plant and remove the heads later. Sun-dry the harvested panicles to moisture levels of 12-13 % and thresh and store the grain.

USES OF SORGHUM

Sorghum is a versatile crop. Some types are boiled like rice, some milled to flour for porridge, some "malted" like barley for beer, some baked like wheat into flatbreads, and some popped like popcorn for snacks. A few types have sugary grains and are boiled in the green stage like sweet corn. The whole plant is often used as forage, hay, or silage.

The stems of other types yield sugar, syrup, and even liquid fuels for powering vehicles or cooking meals. The living plants are used for windbreaks, for cover crops, and for staking yams and other heavy climbers. The seeds are fed to poultry, cattle, and swine

Mzee Matheka who lives in a village in Kitui district of Kenya says “The high cost of Kerosene has made us to use dried stems of sorghum for cooking. I don’t know where i could have got money to buy kerosene considering the hard economic times,” such stories abound in many parts of the world and the importance of sorghum is apparent.

Sorghum plays an important role as a food security crop especially in semi arid lands of Kenya. This is because of its adaptation where it rolls up its leaves and thus decreasing transpiration. Sorghum, changing fortunes Sorghum has been viewed as a crop for the poor and marginalized communities in the drought-prone arid and semi-arid regions of Kenya.

Sunday, 15 January 2012

FACTORS AFFECTING THE POST HARVEST QUALITY OF CUT FLOWERS

The most important factors affecting the life of cut flowers in addition to maturity stage include;

image  1. FOOD SUPPLY

This refers to respiratory metabolites. In a cut flower, all the metabolites are channeled towards flower development. Starch sugar stored in the stem, leaves and petals provide much food needed for flower opening. Simple nourishing food for flowers is sugar but sugar is also a suitable substrate/ food for bacteria hence you need a good preservative

Vase life can be improved by supplying food (sugar) after harvest. e.g. in tuberose and gladiolus in which flowers open further up the spike, flowers are bigger and have a longer vase life when ‘pulsed’ with a preservative solution containing 20% sucrose prior to shipping.

In those flowers where foliage is part of flower quality, e.g. Alstroemeria, if supply of carbohydrates is inadequate, leaves ‘blacken’. Tuberose flowers pulsed with 20% sucrose showed an increase of florets opening from 34% to 57% and an increase of vase life from 5-11 days.

2. TEMPERATURE

This is the most important factor because it influences the factors. Flowers are living and respiring. Respiration increase exponentially with temperature; Temperature also affects the rate of water loss, growth and development, production and response to ethylene, growth of microbes.

To reduce water loss temperature must be kept low. Flowers held at 300 will respire 45 times faster than flowers held at 20 C. Rapid removal of field heat and optimum storage temperature for cut flowers is 0-20 C for tropical flowers, e.g. anthuriums, strelitzia and orchids, storage temperature of between 10-150 C.

3. WATER SUPPLY

Plants are about 80-90% water. Cut flowers have a high surface area to volume ratio, and frequently have many leaves; hence are prone to loosing water much more rapidly compared to most perishable commodities. By detaching the flower, its source of water supply is cut off. Cut flowers should be stored under high relative humidity 95% to minimize water loss; particularly during long term storage. Loss of water causes loss of quality, accelerated aging, ethylene production, flowers can be rehydrated provided there is no obstruction to water flow. Movement of water in the stems of cut flowers can be obstructed in a number of ways:

4. AIR EMBOLISMS

The water column in the xylem vessels is under tension due to transpiration. When the stem is cut, this tension is released and a small bubble of air enters each conducting tube.

The air bubbles do not move up the stem, and may restrict water flow when the stem is placed in a vase. Removal of embolism is re-cutting the stem about 2.5 cm under water. Rehydration is improved by acidifying the vase solution ph 3.5 or by heating the vase solution to 400 C

5. WATER QUALITY

Alkaline water does not readily flow through the cut flowers stems. Use or hard water can therefore substantially reduce flower vase life. This problem can be overcome by acidifying to a PH of 3.5-4.0 citric acid is commonly used. HQC (Hydroxy quinine citrate) at a concentration of 250ppm is also effective.

6. BACTERIAL PLUGGING

Sugar solution enhances vase life; but it is also an excellent substrate for the growth of bacteria and fungi. Bacterial and fungal growth is further enhanced by materials that leak out of the cut stem ends. Substrates produced by the bacteria, and the bacteria and the bacteria themselves may rapidly clog the fine tubes of the water conducting system. Buckets should therefore be regularly cleaned to prevent growth of bacteria (biocides like HQC)

7. PHYSIOLOGICAL PLUGGING

When a plant is cut, wounding occurs. To protect the wound, the plant produces latex (phenolics and tannins). The exudates leak into the vase solution and are later absorbed with the water. Being gummy, they block the vascular system of the cut flower; thereby hindering free flow of the vase solution. To restore free flow, re cut the stem to remove the cemented end of the flower.

8. ETHYLENE

Certain flowers especially those of caryophyllaceace family (carnations and gypsophilla) senesce rapidly if exposed to minute concentrations of ethylene. The higher the available ethylene concentration, the sooner the flower will bloom and wilt. In general, that ethylene can induce different damage symptoms including

a) Short longevity/vase life

b) Insufficient opening of the flower bud

c) Early wilting

d) Drop of buds and petals

e) Drop of buds and petals

f ) Discoloration of the flowers

Ethylene can occur at concentrations of 1-5ppm is already detrimental to cut flowers. Flowers should be handled in areas with the least ethylene contamination. Effects of ethylene can be minimized by holding produce at low temperatures and by using ethylene inhibitors e.g. silver thiosulfate and 1MCP

DISTINCTIVE CHARACTERISTICS SHARED BY ALL CUT FLOWERS

Characteristics shared by all cut flowers

image 1. Generally a very high rate of respiration- when exposed to high temperatures, they easily wilt because of rapid loss of water. Remember, flowers are used to convey emotions of love, care, to someone. It is thus presenting a wilting flower to someone is undesirable and unkind.

2. Very high surface to volume ratio- this makes them susceptible to rapid water loss and wilt is not stored at temperatures that reduce the rate of respiration.

3. Substantial growth and development after harvest. Most flowers are harvested at the tight bud stage therefore they should be handled with care so that this biological process continues unabated in the vase of the customer. The quality of flowers is measured by their ability to continue in the aforementioned process.

4. High sensitivity to mechanical damage, pests and disease- pests like thrips bore pin holes on petals leading to their eventual fall. Diseases like botrytis attack the blooms causing water soaked lesions on them.

FACTORS THAT AFFECT THE VASE LIFE OF CUT FLOWERS

image 1.Exposure to ethylene is the precursor to senescence of flowers. A flower that is exposed to, or is producing high levels of ethylene will age faster, thus reducing the enjoyment of its beauty by the customer.

Exposure to ethylene occurs during storage. Never store different flowers or other agricultural produce in the same store; they produce varying levels of ethylene and their sensitivity also varies.

2. Yellowing of leaves- This condition is typically observed in Alstroemeria. Yellowed leaves reduce the appeal of cut flowers. Yellowing can be delayed by applying plant growth hormones like Florissant 100 or 200 that contain silver thiosulfate to facilitate the inhibition of ethylene production; consequently increasing vase life.

3. Insufficient nutrients

4. Insufficient uptake of water- water is responsible for the turgidity of the cells, therefore when a flower does not take sufficient water; its petals will be droopy. A flower that uptakes sufficient water appears fresh healthy and beautiful

5. Growth/ infection by micro-organisms

The end of vase life of a cut flower is marked by one of a number of factors including

1. Wilting of the flower

2. Wilting of the foliage

3. Shattering i.e. loss of flowers/florets

4. Ethylene related senescence

5. Non ethylene senescence

6. Leaf yellowing

DIFFERENCES BETWEEN CUT FLOWERS AND OTHER AGRICULTURAL PRODUCTS

A flower is composed of many morphological units; including sepals, petals, androecium, gynoecium, stem; and often leaves. Each of these structures is complex in their own right and differ both morphologically and physiologically. Flowers, stems and leaves interact- e.g. endogenous and applied sugars move from leaves to the flower. These interactions between these organs of flowers make flowers more susceptible to post harvest loss of quality compared to fruits, vegetables and seeds. 

image 1) Most cut flowers have two distinct stages physiologically, on the other hand once fruits and vegetables are harvested, the subsequent stage is senescence.

a) Flower bud growth and its development to full opening- A flower may be harvested at the tight bud stage; with its remaining life cycle concluded in a vase, when it fully opens. A flower must therefore be harvested at the correct maturity stage. For example Alstroemerias are harvested when the first flower is just about to open, (tight stage) if it is meant for export; or when it is fully open for direct sales.

When handling cut flowers, care should be taken to ensure that when they reach the customer, this paramount biological process continues. These are some of the quality requirements of flowers; without which a flower is rejected by the market.

b) Maturation, senescence and wilting

Though vase life depends on the type of flower, variety and growth conditions, it can be greatly influenced by post harvest treatment. Cut flowers have to face all kinds of aberrant environment like, lengthy and waterless storage in boxes, bumpy transport, violent handling and fluctuating temperature changes as they are moved from the farm to the consumer; who is often thousands of miles away. Only flowers treated with great care can survive these conditions and give the consumer the beauty and pleasure he paid for.

Friday, 13 January 2012

FACTORS AFFECTING THE POST HARVEST QUALITY OF CUT FLOWERS

The most important factors affecting the life of cut flowers in addition to maturity stage include;

image  1. FOOD SUPPLY

This refers to respiratory metabolites. In a cut flower, all the metabolites are channeled towards flower development. Starch sugar stored in the stem, leaves and petals provide much food needed for flower opening. Simple nourishing food for flowers is sugar but sugar is also a suitable substrate/ food for bacteria hence you need a good preservative

Vase life can be improved by supplying food (sugar) after harvest. e.g. in tuberose and gladiolus in which flowers open further up the spike, flowers are bigger and have a longer vase life when ‘pulsed’ with a preservative solution containing 20% sucrose prior to shipping.

In those flowers where foliage is part of flower quality, e.g. Alstroemeria, if supply of carbohydrates is inadequate, leaves ‘blacken’. Tuberose flowers pulsed with 20% sucrose showed an increase of florets opening from 34% to 57% and an increase of vase life from 5-11 days.

2. TEMPERATURE

This is the most important factor because it influences the factors. Flowers are living and respiring. Respiration increase exponentially with temperature; Temperature also affects the rate of water loss, growth and development, production and response to ethylene, growth of microbes.

To reduce water loss temperature must be kept low. Flowers held at 300 will respire 45 times faster than flowers held at 20 C. Rapid removal of field heat and optimum storage temperature for cut flowers is 0-20 C for tropical flowers, e.g. anthuriums, strelitzia and orchids, storage temperature of between 10-150 C.

3. WATER SUPPLY

Plants are about 80-90% water. Cut flowers have a high surface area to volume ratio, and frequently have many leaves; hence are prone to loosing water much more rapidly compared to most perishable commodities. By detaching the flower, its source of water supply is cut off. Cut flowers should be stored under high relative humidity 95% to minimize water loss; particularly during long term storage. Loss of water causes loss of quality, accelerated aging, ethylene production, flowers can be rehydrated provided there is no obstruction to water flow. Movement of water in the stems of cut flowers can be obstructed in a number of ways:

4. AIR EMBOLISMS

The water column in the xylem vessels is under tension due to transpiration. When the stem is cut, this tension is released and a small bubble of air enters each conducting tube.

The air bubbles do not move up the stem, and may restrict water flow when the stem is placed in a vase. Removal of embolism is re-cutting the stem about 2.5 cm under water. Rehydration is improved by acidifying the vase solution ph 3.5 or by heating the vase solution to 400 C

5. WATER QUALITY

Alkaline water does not readily flow through the cut flowers stems. Use or hard water can therefore substantially reduce flower vase life. This problem can be overcome by acidifying to a PH of 3.5-4.0 citric acid is commonly used. HQC (Hydroxy quinine citrate) at a concentration of 250ppm is also effective.

6. BACTERIAL PLUGGING

Sugar solution enhances vase life; but it is also an excellent substrate for the growth of bacteria and fungi. Bacterial and fungal growth is further enhanced by materials that leak out of the cut stem ends. Substrates produced by the bacteria, and the bacteria and the bacteria themselves may rapidly clog the fine tubes of the water conducting system. Buckets should therefore be regularly cleaned to prevent growth of bacteria (biocides like HQC)

7. PHYSIOLOGICAL PLUGGING

When a plant is cut, wounding occurs. To protect the wound, the plant produces latex (phenolics and tannins). The exudates leak into the vase solution and are later absorbed with the water. Being gummy, they block the vascular system of the cut flower; thereby hindering free flow of the vase solution. To restore free flow, re cut the stem to remove the cemented end of the flower.

8. ETHYLENE

Certain flowers especially those of caryophyllaceace family (carnations and gypsophilla) senesce rapidly if exposed to minute concentrations of ethylene. The higher the available ethylene concentration, the sooner the flower will bloom and wilt. In general, that ethylene can induce different damage symptoms including

a) Short longevity/vase life

b) Insufficient opening of the flower bud

c) Early wilting

d) Drop of buds and petals

e) Drop of buds and petals

f ) Discoloration of the flowers

Ethylene can occur at concentrations of 1-5ppm is already detrimental to cut flowers. Flowers should be handled in areas with the least ethylene contamination. Effects of ethylene can be minimized by holding produce at low temperatures and by using ethylene inhibitors e.g. silver thiosulfate and 1MCP

Popular Posts